Cyclosporin A Disrupts Notch Signaling and Vascular Lumen Maintenance

نویسندگان

  • Raghav Pandey
  • Mark A. Botros
  • Benjamin A. Nacev
  • Allan R. Albig
چکیده

Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and vascular function in zebrafish embryos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion.

Vascular development is dependent on various growth factors and certain modifiers critical for providing arterial or venous identity, interaction with the surrounding stroma and tissues, hierarchic network formation, and recruitment of pericytes. Notch receptors and ligands (Jagged and Delta-like) play a critical role in this process in addition to VEGF. Dll4 is one of the Notch ligands that re...

متن کامل

Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis.

The requirement for notch signaling during vascular development is well-documented but poorly understood. Embryonic and adult endothelial cells (EC) express notch and notch ligands; however, the necessity for cell-autonomous notch signaling during angiogenesis has not been determined. During angiogenesis, EC display plasticity, whereby a subset of previously quiescent cells loses polarity and b...

متن کامل

Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development

The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signal...

متن کامل

Notch controls endothelial cells

Notch signaling is an evolutionarily conserved pathway that controls numerous cell differentiation steps during development. Also in the adult, Notch signaling is essential to control stem cell differentiation in the bone marrow or the gut mucosa. Here, we briefly emphasize the roles of Notch during development of blood vessels (angiogenesis). Further, we highlight novel findings that indicate ...

متن کامل

Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation

Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015